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Abstract

This paper presents a method of reconstruct-
ing the parameters of a reflectance model
from photographs of an object. We assume
given object geometry and light source po-
sition, as well as a homogeneous reflectance
function. We employ a semi-automatic cam-
era calibration and reconstruct radiance val-
ues from several photographs using different
exposure times. After choosing an appro-
priate set of samples from the radiance im-
age, we compute the geometric parameters
for each sample. The remaining free model
parameters are determined through an itera-
tive fitting process. The reconstructed model
is validated by simulating the illumination of
the test object with a ray tracer and compar-
ing the resulting images with the real pho-
tographs. The method is applied to the
Phong, Blinn-Phong, and cosine lobe model.

1 Introduction

Image based modeling and rendering has re-
ceived a lot of attention during the last years.
Using images as input often provides a very
convenient way of modeling or redisplaying
visually complex objects at very low compu-
tational and manual cost.

There are a lot of different models for simu-
lating the reflection of light on a surface. The

remaining problem, however, is to find the
right model and the right parameters in order
to imitate real materials. One way of doing
this is measuring the materials with special-
ized sensors, which is of course a very expen-
sive and exhaustive task.

Our approach, in contrast, aims at recon-
structing the parameters of simple illumina-
tion models such as Phong, Blinn-Phong, and
cosine lobe, from a series of photographs.

In Section 2, we will briefly review aspects
of illumination modeling, reflectance mea-
surement, and reconstruction of radiance val-
ues from images. Section 3 describes our ex-
perimental setup as well as the fitting process
for the model parameters. Section 4, along
with the images on pages 7 and 8, demon-
strates and discusses the results of our exper-
iments. In Section 5 we draw conclusions and
point out some directions of future research.

2 Previous Work

This section describes the reflection of light
off a surface, and the reflection models we
have used in our approach. Then we review
some aspects of classical reflectance measure-
ment and describe the reconstruction of radi-
ance values from photographs.



2.1 Reflection and BRDF

In the context of this paper we concentrate
on a local model of light reflection. We as-
sume a single unobtruded isotropic point light
source, and we only consider the direct illumi-
nation falling from the light source onto the
object and being reflected in the direction of
the viewer.

To this end, we denote ~v the unit vector
pointing from some point x on the object to
the viewer, ~l the unit vector from x to the
light source, and ~n the surface normal in x.
The local illumination can be described as fol-
lows:

Lo(x,~v) = fr(x,~v ← ~l)g(x)I cos(~n,~l).

The equation is formulated in units of radi-

ance L[W/(m2sr)], which is the radiant flux
per projected unit area and solid angle arriv-
ing in or leaving a point on a surface. fr,
the so-called bidirectional reflectance distri-

bution function or BRDF, controls how much
of the incoming irradiance (incoming radiant

flux per unit) from some direction ~l gets re-
flected in some other direction ~v. The BRDF
has units [1/sr]. I is the intensity of the
light source (radiant flux per unit solid angle),
and g is the source’s geometry term in units
[sr/m2]. In the case of a point light source,
g = 1sr/r2 describes the quadratic falloff with
the distance from the light source. The prod-
uct g(x)I is the incoming radiance at point x

from direction ~l: g(x)I = Li(x,~l). For more
information on BRDFs, reflectances, light
sources, and similar issues, consult one of the
many comprehensive textbooks on computer
graphics, e.g. [3, 4].

2.2 Reflection Models

Lafortune et al. [5] propose a way of approx-
imating reflectance functions through the so-
called generalized cosine lobe model. This al-
lows for such effects as off-specular reflection,
and retro-reflection. They demonstrate the
usefulness of their method by approximating
several physically-based models and showing
rendered results.
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Figure 1: Geometric situation for reflection
models. ~h is the so-called halfway vector be-
tween ~v and ~l: ~h = (~v +~l)/|~v +~l|.

In this work, however, we concentrate on
very simple BRDFs fr which can be con-
trolled analytically by only a few parameters.
This approach allows us better control over
our experiments, and of course it can be ex-
tended to more sophisticated reflection mod-
els in future. Furthermore, we assume that
the BRDF does not change with varying x.

Phong model. The most commonly used
lighting model is the that of Phong [7]. It
can be computed quite efficiently, but is not
physically justified. It describes the reflec-
tion of light as a linear combination of per-
fect diffuse reflection and specular reflection,
the latter characterized as a power of the co-
sine between reflected light vector and view-
ing direction. Assuming unit vectors, it can
be written as

Lo(~v) =
[

kd < ~n,~l > +ks < ~rl, ~v >n
]

Li(~l)

where ~n is the surface normal, ~l the vector
to the light source, ~v is vector pointing to the
viewer, and ~rl the light vector, reflected at the
surface. All these vectors are functions of the
position x on the surface. Figure 1 shows the
geometric situation on the surface.

If we write down the BRDF fr correspond-
ing to the Phong model (cf. Sec. 2.1), we get:

fr(~v ← ~l) = kd + ks

< ~rl, ~v >n

< ~n,~l >
.

Blinn-Phong model. Instead of us-
ing the cosine between reflected light vec-



tor and viewing vector, the so-called Blinn-

Phong model [1] uses the the cosine between
the halfway vector and the surface normal:

fr(~v ← ~l) = kd + ks

< ~h, ~n >n

< ~n,~l >
.

This can be imagined as describing a large
number of very small, randomly distributed
perfect mirror facets. The halfway vector
~h corresponds to the facet normal direction
which would cause perfect mirror reflection
from ~l in direction of ~v. The powered cosine
is a distribution function for the facet normals
that falls off with increasing deviation from ~h.

Cosine lobe model. Since the Phong
model does not conserve energy (e.g. the de-
nominator of the Phong BRDF causes singu-
larities) and is furthermore not symmetric in
~l and ~v, Lewis [6] proposed to use the Phong
model directly as BRDF, and to add an en-
ergy conserving factor:

fr(~v ← ~l) = kd + ks

n + 2

2π
< ~rl, ~v >n .

2.3 Reflectance Measurement

Many researchers have worked on measur-
ing reflection characteristics of real objects.
The classic approach is to use a so-called go-

nioreflectometer, which is an opto-mechanical
device with a light sensor, a movable light
source and a rotating plate for placing the
object. Ward [12, 11] improves on this in
terms of cost and ease-of-use, by using a fish
eye lens, a CCD camera, and a hemispherical
mirror in combination with a movable light
source.

However, conventional measurement ap-
proaches still require very special devices, and
aim at capturing a general BRDF in all four
dimensions. Unfortunately, the error rates re-
ported for these instruments are still quite
high when compared to the great effort they
require. In this paper, we want to go another
way, by assuming a certain simple reflection
model to begin with, and exploiting knowl-
edge about the model in order to facilitate
the imaging, sampling, and fitting process.

2.4 Radiance Reconstruction

Lighting computations are normally done in
terms of radiance. However, simple sensors
like a digital camera return byte-valued pixel
colors, which are, in general, a non-linear
function of the true radiance. To bridge this
gap, Debevec and Malik [2] have proposed a
method of computing the response curve of
a camera/film combination. By taking pho-
tographs from the same scene, but with dif-
ferent exposure times, they reconstruct the
response of the sensor to the incident irra-
diance. Since it is known that doubling the
exposure time doubles the amount of energy
received at the sensor, one can compute the
relation between radiance and sensor response
through a least squares approximation. This
makes it possible to store the information
from multiple shots of the same object as a
single high dynamic range image containing
floating point radiance values instead of byte-
valued pixel colors.

In addition to converting the sensor re-
sponse to radiance values, this method can
also be applied inversely to convert back radi-
ance values to pixel colors for displaying sim-
ulation results. This way, we can effectively
compare the results of our simulation to the
photographs in a common color space [2, 9].

3 Reflectance Fitting

Given a simple illumination model (Phong,
Blinn-Phong, or cosine lobe), and some pho-
tographs of a known object illuminated by a
known light source, we want to reconstruct
the free parameters of the illumination model,
characterizing the object’s reflection proper-
ties with respect to the given model. In what
follows, we describe our experimental setup as
well as the computational methods we have
applied.

3.1 Light, Scene, and Camera

Our measuring setup (cf. Fig. 2) consists of a
fixed light source (a small halogen bulb imi-



Figure 2: Experimental setup with camera
(front), light bulb (upper left), and calibra-
tion grid.

tating a point light), a consumer quality digi-
tal camera on a tripod, and a calibration grid
defining the floor of our coordinate system.
We measure the position of the light relative
to the the grid. Then, we take a photograph
of the calibration grid and determine the cam-
era parameters by means of Tsai’s calibration
method [10]. This way we obtain a common
coordinate system for the light, camera, and
objects.

After having calibrated the system, we
place flat test objects (in practice, tiles of dif-
ferent materials) on the grid. Then, we take a
photograph of the tile from the known camera
position (with no other light source than our
light bulb). For any given pixel of the result-
ing image, we can determine the world posi-
tion of the corresponding point on the top of
our tile. For each pixel, we can compute the
camera and light vector. The surface normal
is orthogonal to the tile. So each pixel gives us
the resulting radiance as well as all geometric
parameters for the illumination function.

3.2 Radiance Reconstruction

The camera is placed in such way that we can
observe the highlight caused by the reflection
on the tile. We take a series of photographs
of each test object with fixed position and
varying exposure times, and combine the in-
formation from all images into a single high
dynamic range image along the lines of [2].

Due to the limited facilities of the simple cam-
era, we were not able to eliminate saturated
samples completely.

Since we cannot determine neither the ab-
solute radiance values, nor the absolute power
of the light source, these two values result in
a single constant scaling factor which remains
unknown throughout our experiments. For-
tunately, this factor can be neglected since
the input and the simulated output are trans-
formed by the same (real and simulated) sen-
sor.

3.3 Parameter Fitting

Each illumination model can be seen as a ra-
diance function in several parameters:

fr = fr(kd, ks, n, x,~l(x), ~v(x), ~rl(x),~h(x))

We distinguish the geometric parameters
x,~l, ~v,~h, and ~rl, which are known per pixel,
from the photometric, or free, parameters
kd, ks, and n. The free parameters have to be
determined by an optimization process. To
this end, we choose a set of samples (pixels)
s from our radiance image. Then we estimate
some initial values k̃d, k̃s, and ñ, and compute
the simulated radiance L̃o for each pixel s:

L̃o(s) = fr(s, k̃d, k̃s, ñ) · Li(s) · cos(~n,~l)

Now we can compute the L2 error over the
chosen set of samples:

E(k̃d, k̃s, ñ) =
∑

s

||L̃o(s)− Lo(s)||2

Through optimization, we can minimize this
error function by modifying the vector of
free parameters accordingly. Assuming an
isotropic point light source, the gradient of
the radiance can be computed analytically for
the illumination models presented in Section
2. For details on the optimization process,
please refer to [8].

3.4 Sampling

The remaining task is to choose a representa-
tive set of samples, since optimizing the pa-
rameters using all pixels is bound to be in-
tractable. Trying to use uniformly distributed



Figure 3: Top: sample line through the high-
light on the tile. B.l.: reconstructed (solid
line) and simulated (dotted) radiance on the
sample line; b.r.: using only unsaturated sam-
ples.

random samples has turned out to be numer-
ically fragile, and often the global minimum
of of the error cannot be found. This is due
to the fact that the image contains a lot of
diffuse samples far away from the highlight.
In order to robustly reconstruct the Phong
exponent n and the specular weight ks, it is
necessary to sample the highlight very densely
in order to capture its gradient.

So instead of random sampling, we let the
user draw a line through the region of in-
terest. Regular samples along that line are
used for the optimization process. We also
experimented with 2D sample areas (by let-
ting the user mark a rectangle in the image),
but apart from resulting in many more sam-
ples and drastically increasing the computa-
tion time, the area-based method did not pro-
duce very different results. It should be noted
that the line-based method can only be ap-
plied to isotropic reflection models. If the re-
flection is not invariant under rotation around
the normal, a single line cannot capture all
aspects of the model.

Another important issue is the treatment
(detection and exclusion) of saturated sam-
ples. Figure 3 shows a sample line drawn by
the user, the measured radiance along that
line (solid lines), and the simulated radiance
using the reconstructed Phong model (dot-

ted). The curve reconstructed from all sam-
ples gives a much worse radiance approxima-
tion than the curve reconstructed from unsat-
urated samples only.

4 Results

In order to validate our approach, we
have first reconstructed reflectance parame-
ters from ray traced images with known re-
flectance models. As expected, the fitting
method was able to find the correct param-
eters with only a few optimization iterations
(in general, less than 15). We always used
sample lines through the center of the high-
light (which could be detected automatically
by finding the maximum radiance value from
unsaturated images). We varied the number
of samples (100 to 800), as well as the sam-
ple line direction. In nearly call cases, the
parameters have been reconstructed with an
error less than 1/1000. The only limitation of
the optimization approach is that it requires
reasonable start values for the fitting process
in order to converge quickly.

For validating the measurement of real ob-
jects, we have created a ray tracing scene de-
scription of our experiment (camera, polygon,
point light) and simulated the illumination of
the polygon using the reconstructed model
parameters. We used the inverse response
function of our camera in order to remap the
radiance values returned by the ray tracer to
pixel color values. The original photographs
as well as the simulated images (using Phong,
Blinn-Phong, and cosine lobe) for four test
objects are shown in Figures 4 – 7. In contrast
to our experiments with rendered images, the
fitting from real images requires a minimum
of 500 samples in order to converge robustly.
The variation of the coefficient and exponent
values lies below 5% for line samples, which
seems to be in the same order of magnitude
as the noise present in the original images.

The visual similarity of simulated and real
images is quite good, considering the short-
comings of our sensor (saturated images,
blooming, noise), of the light source (not



point-like), and of the object surface (surface
variations not covered in our approach, cf.
Fig. 7). It can be noted that the Blinn-Phong
model does the best job in reconstructing the
shape of the highlight. On the other hand,
the cosine lobe model seems to fit the gra-
dient of the real highlight much better than
the other two models, which is obviously due
to the physically correct cosine weighting (cf.
Sec. 2.2).

5 Conclusions

We have presented a method for reconstruct-
ing parameters of simple reflection models
from images, and demonstrated the valid-
ity of our approach by applying it to ren-
dered and real images using the Phong, Blinn-
Phong, and cosine lobe model, and by vi-
sually comparing simulated images and pho-
tographs. We exploited several constraints
(known geometry and light source, calibra-
tion grid, homogeneous reflectance function)
in order to get the desired results, and our
method turned out to work quite well for the
given setup.

However, the general goal of image based
modeling and rendering is to remove most of
the above mentioned constraints, so that in
future it will be possible to reconstruct many
more parameters from a series of images (e.g.
approximate geometric model, surface bumps,
incoming light field, etc.). There is still much
research and engineering work to be done to
this end. Results from the different areas of
computer vision and computer graphics have
to be applied and combined in order to get
the maximal range of information out of the
images. And, besides that, image based mod-
eling and rendering could profit very much
from any improvements in commonly avail-
able sensors.
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Figure 4: Real and rendered images of a plastic coating. From left to right, top to bottom:
photograph; Phong model, Blinn-Phong model, cosine lobe model.

Figure 5: Tile with very specular coating. From left to right, top to bottom: photograph;
Phong model, Blinn-Phong model, cosine lobe model. Note the blooming effect on the Blinn-
Phong highlight.



Figure 6: Wood tile. From left to right, top to bottom: photograph, Phong model, Blinn-Phong
model, cosine lobe model.

Figure 7: Another tile. From left to right, top to bottom: photograph, Phong model, Blinn-
Phong model, cosine lobe model. Note that the visible surface perturbations in the photograph
do not disturb the BRDF reconstruction too much.


